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PROBLEM

Need Small Scale (milligram) Screening Test for FR Additives to

Reduce Development Costs and Accelerate Discovery.

APPROACH

• Measure Properties of Complete Combustion using Microscale

Combustion Calorimetry.

• Use a “Burning Efficiency” to Account for Incompleteness of 

Flaming Combustion.

• Account for Uncertainty Using Probability. 

RESULTS

CONCLUSIONS

SCREENING PLASTICS FOR FLAMMABILITYSCREENING PLASTICS FOR FLAMMABILITY
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FLAME RETARDANTS WORK INFLAME RETARDANTS WORK IN TWO WAYSTWO WAYS
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Need to quantify the efficiency of these modes of action



APPROACHAPPROACH

Pyrolysis

Sample

Gases analyzed for residual oxygen
to compute heat release rate

O2
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Combustion

Flaming 
Combustion

Microscale
Combustion
Calorimeter

1) Reproduce elements of flaming combustion 
in non-flaming test

3) Relate thermal combustion
properties to fire and flame
tests using deterministic 
and probabilistic models

2) Measure thermal combustion 
properties of materials



MICROSCALE COMBUSTION CALORIMETER (MCC)MICROSCALE COMBUSTION CALORIMETER (MCC)
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AUTOMATED / HIGH THROUGHPUT MCCAUTOMATED / HIGH THROUGHPUT MCC

Combustor with oxygen consumption
attached to TGA with automated sampling

Capable of ≈ 50 tests/day



MCC became
ASTM Standard

April 1, 2007

MCC became
ASTM Standard

April 1, 2007



THERMAL COMBUSTION PROPERTIES (MCC)THERMAL COMBUSTION PROPERTIES (MCC)
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FORCED AND UNFORCED COMBUSTIONFORCED AND UNFORCED COMBUSTION

Cone Calorimeter (ASTM E 1354)

OSU Calorimeter 
(14 CFR Part 25)

Forced
Combustion

Unforced
Combustion

Vertical Flame Test 
(ASTM D 3801)

Oxygen Index (ASTM D 2863)



FLAMING COMBUSTION: FLAMING COMBUSTION: Gas Phase ChemistryGas Phase Chemistry

Complete Combustion (Oxidation) of Fuel Gases

CcHhOmNnXx + m O2

900 °C
CO2 + H2O + N2 + HX

10 secFuel Gases

Incomplete Combustion of Fuel Gases in Diffusion Flame

CcHhOmNnXx + n O2

Flame

Fuel Gases + CO + CxHy + soot 

n O2

m O2
<  1χ =Flaming Combustion Efficiency,

Microscale
Combustion
Calorimetry

CO2 + H2O + N2 + HX Fires and 
Flames



FLAMING COMBUSTION: FLAMING COMBUSTION: Condensed PhaseCondensed Phase PhysicsPhysics

Heat Transfer Efficiency, θ = =
q″net− κ(ΔT/Δx) char layer
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Heat Release Rate (HRR) for Steady Burning:

Hc = Heat of Combustion
Of Fuel Gases

0

χ = Combustion Efficiency
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θ = Heat Transfer Efficiency
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STEADY BURNING MODEL: MacroSTEADY BURNING MODEL: Macro

HRP 



HRP = = ηg

HRR = ηc
ηg

( ′ ′ q flame − ′ ′ q rerad ) + ηc
ηg

′ ′ q ext
Heat Release 

Rate:

Heat Release Capacity

Flaming Combustion Efficiency

Hc
Lg
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Fire Response

FORCED FLAMING COMBUSTIONFORCED FLAMING COMBUSTION



HEAT RELEASE RATE:HEAT RELEASE RATE: Macro Vs. MicroMacro Vs. Micro
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ASTM E 906/OSU
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Flame Resistance

UNFORCED FLAMING COMBUSTIONUNFORCED FLAMING COMBUSTION



FLAME EXTINCTION CRITERIAFLAME EXTINCTION CRITERIA

HRP  ≤

MACRO Extinction Criterion for Flame Tests

ηc
ηg HRR*

Flame Extinction Occurs at Critical HRR:

MICRO Extinction Criterion for Flame Tests

HRR* ≈
100 kW/m2 (Downward Burning) 

60 kW/m2 (Upward Burning)

(q″flame- q″rerad)
≤

(q″flame- q″loss)
HRR*

= ηc
*



[O2
∗ ] = ′ ′ q rerad

a
+

HRR∗ ηg / a
ηc

≈ 12% + 2.8 kJ / g − K
θ χ ηc

(%)

Limiting Oxygen Index (LOI) = [O2*] 

q″flame ∝ [O2] = a [O2]

a = 1.4 kW/m2-%O2

ηg =
hg / ΔTp

χθ
= ( 2 kJ / g ) /(50K )

χθ
= 40 J / g − K

χθ

HRR* = 100 kW/m2 (downward burning)

FLAME RESISTANCE TEST (ASTM D2863)FLAME RESISTANCE TEST (ASTM D2863)

LOI EXTINCTION CONDITION: 

′ ′ q rerad = σTmax
4 ≈17kW/m2



EFFECTEFFECT OF BURNING EFFICIENCY ON L.O.I.OF BURNING EFFICIENCY ON L.O.I.
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q″flame ≈ 30 kW/m2

ηg =
hg / ΔTp

χθ
= ( 2 kJ / g ) /(50K )

χθ
= 40 J / g − K

χθ

HRR* = 60 kW/m2

FLAME RESISTANCE: UPWARD BURNINGFLAME RESISTANCE: UPWARD BURNING

UL 94 V EXTINCTION CONDITION: 

ηc ≤
HRR∗ ηg

χθ( ′ ′ q flame − εσTmax
4 )

≈ 2.4 MW J m−2 g−1K −1

χθ( ′ ′ q flame − εσTmax
4 )

Comparative Burning Characteristics of Plastics in 
Vertical Position (UL 94 V or ASTM D 3801):

q″rerad = CHF ≈ εσTmax 
4
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OODDS OF BURNINGDDS OF BURNING AND AND HRRHRR

Assume that Odds of Burning is related to HRR
and probability of burning, pB

HRR
HRR*

pB

1 - pB
=

HRR
HRR*

pB =
(HRR/HRR*)

1 + (HRR/HRR*)

Then,

pB

10 0.999
5 0.99

1/2 0.11
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1/10 0.001

2 0.89
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3

Odds of
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OODDS OF BURNINGDDS OF BURNING ANDAND THERMAL COMBUSTION PROPERTIESTHERMAL COMBUSTION PROPERTIES

Then,

= χθ ηc

ηg

And:

′ ′ q netHRR HRR* ≈ 60 kW/m2=;
ηc

ηg
′ ′ q critical

*

pB = (χθ ηc / ηc )3 / χθ

1+ (χθ ηc / ηc )3 / χθ

*

*

Depends only on burning efficiency (χθ)
and heat release capacity (ηc )
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Heat Release Capacity, ηc (J/g-K)
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UL 94 V 
Rating

= Burn (HB / NR / V-2 / V-1) = No Burn (V-0 / 5V)

pB = Fraction of Burn
Results in HRC Bin

MEASURE PROBABILITY OF BURNING,MEASURE PROBABILITY OF BURNING, ppBB
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Heat Release Capacity, ηc (J/g-K)
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CONCLUSIONSCONCLUSIONS

Probabilistic Models are required to reconcile MCC data with 
flame resistance tests because

• Intumescence, charring (θ)
• Gas phase inhibition (χ)
• and Dripping

are comparable in magnitude and effect to thermal combustion 
properties at extinction.

Incomplete
combustion in flame

Deterministic Models using thermal combustion properties 
appear adequate for forced flaming combustion. 


